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We report the results of electrical resistivity and magnetoresistance (MR) measurements carried out
on Lay;3Cay;3Mn0s/BaZrOs composites prepared by solid state reaction method. The metal-to-insulator
transition and the magnitude of magnetoresistance are significantly influenced by the content of BaZrOs,
suggesting the presence of ionic diffusion between La,;3Ca; 3Mn0Os and BaZrOs, although the dependence
of the electrical resistivity as a function of La,;3Ca;;3MnO3 volume fraction can be roughly described by

classical percolation conduction model. The conductive behavior above the metal-to-insulator transition
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temperature can be well explained by Mott’s variable range hopping model.
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1. Introduction

Much attention has been paid on perovskite oxides dur-
ing the last decades because they have rich physical properties
including superconductivity with high-T¢, ferromagnetism with
half metallicity, and ferroelectricity with large polarizations, etc.
For manganite-based perovskite oxides of La;_yAxMnO3; with an
optimal doping content the colossal magnetoresistance (CMR)
is observed when a high magnetic field is applied. The mag-
netoresistance effect is greatly influenced by the presence of
grain boundaries in polycrystalline materials [1,2] and the lattice
mismatch strain in heteroepitaxial films [3,4]. For potential appli-
cations in spintronics devices a large magnetoresistance effect at
low applied magnetic field is necessary. A lot of efforts have been
devoted to achieve low-field magnetoresistance in magnetic tunnel
junctions (MT]s) with insulating barrier [5-12], in artificial bicrys-
tal grain boundary junctions [13-18] and in manganite/insulating
oxide composites [19-24]. In magnetic tunnel junctions the tun-
neling magnetoresistance (TMR) effect is principally dependent on
the spin polarization of ferromagnetic electrodes and the spin-
dependent tunneling process through insulating barrier. For the
artificial bicrystal grain boundary junctions, isolated grain bound-
ary effect on low field magnetoresistance can be investigated.
Well-defined manganite/barrier interface and manganite grain
boundary structure must be obtained in both cases above.
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Usually conventional solid state reaction is employed to pre-
pare manganite/insulating oxide composites, where the secondary
insulating phase is assumed to be chemically immiscible with the
manganite matrix. Enhanced spin-dependent scattering of con-
ductive electrons at manganite/oxide phase boundary is expected
to contribute to low-field magnetoresistance effect in the com-
posites. In Lay3Sr1;3Mn03/CeO, composite the magnetoresistance
of 1.5%at 100 0e was observed for the sample with a percola-
tion threshold of Lay;3Sry;3sMnO3 volume fraction (fismo =0.20)
[25], which is close to the critical volume fraction theoretically
predicted for usual three-dimensional lattice types [26]. Similar
experimental results for the manganite/insulating oxide com-
posites were reported [21]. In the real systems, possible ionic
diffusion between the phases, however, is important for both
theoretical and experimental aspects for understanding behav-
ior of conductivity for composite materials. We present detailed
preparation, electrical transport and magnetoresistance studies of
the Lay;3Ca;3Mn03/BaZrOs composite. We observe that the effect
of ionic interdiffusion between the La,;Caj;3MnO3(LCMO) and
BaZrOs secondary phase (BZO) should be taken into account for
explanation of transport properties.

2. Experiment

Conventional solid state reaction in air was used to prepare Lay;3Caj3MnO3
bulks. These starting powders of La; 03, CaCO3 and MnO; (99.5% purity) were mixed
and heated at 1000°C for 36 h in air with intermediate grinding. Cold-pressed pel-
lets were then sintered at 1400 °C for 12 h with furnace cooling. For preparation of
polycrystalline (x)LCMO:(1 — x)BZO samples with different La,3Ca;;3MnOs volume
fractions x, milled LCMO powder was thoroughly mixed and grounded with BaZrOs
powder. The mixture was finally sintered at 1300-1400°C for 24 h in air.
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Fig. 1. XRD pattern for (x)Lay;3Ca;3MnO3:(1 —x)BaZrOscomposites with different
Lay;3Caj;3MnOsvolume fraction x.

The phase composition and the crystalline quality of the Lay;3Ca;;3sMnOs and
composites were analyzed employing X-ray diffraction (XRD) using Cu-Ke radia-
tion. The micrograph of samples was investigated by scanning electric microscopy
(SEM). Resistivity dependent on temperature from 77 K to 300 K was measured by
standard four-probe method in zero field and 0.6 T applied magnetic field to evaluate
electrical and magnetoresistance properties for bar-shaped samples. The magne-
toresistance (MR) is defined as MR=(R(0) — R(H))/R(0), where R(0) is the resistivity
in zero magnetic field and R(H) is the resistivity in applied magnetic field of 0.6 T.

3. Results and discussion

X-ray powder diffraction result on Lay3Ca;;3sMnOs in Fig. 1
demonstrates a pure perovskite phase within the experimental
error. For (x) Lay;3Cay;3MnO3:(1 —x) BaZrO3 composites, no impu-
rity phase peaks except for diffraction peaks of the La,3Ca1;3MnO3
and BaZrO3 phase were detected. The relative intensities of diffrac-
tion peaks from the LCMO phase systematically change with
the LCMO volume fraction. We notice that the (110) diffrac-
tion peak positions of the Lay;3Ca;;3MnO3 phase have a rather
slight shift towards low-angle direction with increasing the BaZrO3
content, whereas the (11 0) diffraction peak of the BaZrO3phase
moves towards high-angle direction. This suggests the pres-
ence of interdiffusion between Mn3* and Zr#* discussed later.
It is actually difficult to get a complete chemical immiscibility
between Lay;3Cay;3MnO3 and BaZrOs if usual solid state reaction
method is employed, although the ionic diffusion between the
Lay;3Ca 3MnO3 and BaZrOs phases does not lead to formation of
impurity phases in the composites.

Fig. 2 gives SEM images of the (x)Lay;3Ca;3Mn0O3:(1 —x)BaZrOs
composites to study morphology evolution with introduction of
BaZrOs. Pure Lay;3Ca;;3Mn0O3 has a typical equiaxed microstruc-
ture with an average grain size of ~4um. Upon addition of
10% BaZrOs; the microstructure of the composite is apparently
changed, where a lot of small grains are detectable. Further increas-
ing the BaZrO3 volume fraction obviously leads to formation of
microstructure with homogenous fine grains with an average size
0f0.4-0.5 pm. For the x = 0.2 sample, however, sudden coarsening is
controlled by the growth behavior of BaZrOs itself. We believe that
in the (x)Lay;3Ca;;3MnO3:(1 —x)BaZrO3 system the introduction
of BaZrOs significantly suppresses the growth of Lay;3Ca;;3Mn0O3

grains due to blocking of movement of the grain boundaries. This
kind of refined grain microstructure will affect the electrical trans-
port property in these composites.

We measured temperature dependent resistivity curves in zero
and 0.6 T applied magnetic field for a series of specimens with
varying x. For x>0.23 we observe an obvious metal-to-insulator
transition. In Fig. 3 representative resistivity curves dependent on
temperature for (x)Lay;3Cay;3Mn0O3:(1 —x)BaZrO3 composites are
plotted. The transition peak temperature is denoted as Tp. On the
contrary, the samples with x<0.23 do not display any resistive
transition in the measured temperature and resistance range.

Fig. 4 indicates the transition peak temperature T, with differ-
ent LCMO volume fractions for the composites. With addition of a
little amount of BaZrO3 the T}, of the composite significantly drops
down to 125K for x=0.90. Further increasing the BZO content gives
rise to a slightly rising of Ty, but the T, value is only around 180K
for x ~0.40. The T, drop in the LCMO/BZO composite is much larger
than thatin other manganite/insulator composites [27,21]. This can
be attributed to a possible variation of the manganite composition
due to the existence of ionic interdiffusion between the phases.
The reversible increase in T, with decreasing the LCMO content
for x<0.90 implies that the ionic interdiffusion occurs mainly at
the interface of the Lay;3Ca;3Mn0O3 and BaZrO3 phases. The mag-
netoresistance of the composite shows a reverse trend with the
volume fraction of BaZrOs, i.e. the MR increases with decreasing
the T, similar to the effects induced by element substitution [28]
and lattice strain [4].

Fig. 5 shows the resistivity of the composites at 300K as a func-
tion of the Lay3Ca;3Mn03 volume fraction. A sharp increase of five
orders of magnitude in the resistivity of composites was detected
at x~0.20 in the measured range. The classical percolation law is
usually used to evaluate the conductive process for the conduc-
tive regime. According the percolation law p o (f—f)t, [29] the
percolation threshold f. the resistivity exponent t fitted to the mea-
sured data are 0.195 and 1.9, which actually fall in the range of
theoretical predications of three-dimensional continuum percola-
tion models. The 0.195 percolation threshold basically agrees with
the value found for Lay 3Sr;;3Mn03/CeO, composites (fismo =0.20)
[21]. Because many factors, such as porosity, poor connectivity,
grain size difference and composition variation, affect the percola-
tion conductive behavior in conducting/insulating composites, we
should point out that the fitting does not fully confirm the presence
of pure percolative conductivity in the Lay;3Caj;3MnO3/BaZrOs
composites, where the apparent decrease of the transition peak
temperature Tp with the introduction of BaZrOs3 is an indicator of
composition variation in the La,;3Ca;;3MnOs.

It has been found above that the electronic conduction at high
T with the Lay;3Ca;;3MnOsvolume fraction follows the classical
3D continuum model for the LCMO/BZO composite. In order to
explore the conductive mechanism above T, we analyze the tem-
perature dependent resistivity for the composites. For the pure
Lay;3Ca;3Mn0;3 sintered bulk the electronic conduction above
Tp can be usually described by the thermal activation model
0= pPceXp(Eg/k T) [21]. For the LCMO/BZO composite it was not
successful to fit the p(T) data above T, by the thermal activa-
tion model. The measured data in the relatively wide temperature
range are well fitted by the variable range hopping (VRH) model
o= poexpl(To/T)V*] proposed by Mott [30]. Fig. 6 displays several
typical results for ficmo =0.23, 0.30, 0.70 and 0.90. We find that
the slope obtained from the relationship between Inp and T-1/4 as
shown in Fig. 6 is almost identical for different x, suggesting that
increasing the BZO content does not lead to a change of electronic
conduction mechanism in the composite. This also indicated a very
low and limited solution of BaZrOs in Lay;3Ca;3Mn0Os. Based on
consideration of the tendency of the T and MR as indicated in Fig. 4,
we believe that the ionic diffusion, especially at the phase interface,
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Fig. 2. SEM images of (x)Lay;3Ca;3Mn03:(1 —x)BaZrOs sintered bulks.
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Fig. 3. Temperature-dependent resistivity curves for (x)Laz;3Ca;3MnO3:(1 — x)BaZrO3 composites measured at zero field (solid lines) and 0.6 T (dotted lines).
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Fig. 4. Metal-to-insulator transition temperature T, (solid circles) and magnetore-
sistance MR (open circles) dependent on the Lay;3Ca;;3MnOsvolume fraction x. The
MR was measured at 0.6 T and given at near Tj, i.e. the maximal MR value.
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Fig. 5. Electrical resistivity at 300 K as a function of the Lay;3Ca;;3MnOsvolume
fraction x. The line corresponds to the fit by percolation law.
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Fig. 6.Inp is plotted versus T4 for some representative
(x)Laz;3Ca13Mn03:(1 — x)BaZrOzcomposites. The lines are linear fits to the
data by the formula p = poexp[(To/T)!/] above T,.

isresponsible for the VRH-type conductivity in the LCMO/BZ0O com-
posite. The ionic diffusion limited at the LCMO/BZO phase interface
may give rise to random potential fluctuations, which localize the
carriers in the LCMO.

Substitutive ionic diffusion in the LCMO/BZO composite occurs
most probably between Mn3* and Zr**. The probability of the
Mn3*/Zr** interdiffusion should have a maximum at the phase
interface. For the high f; cmo composite the BaZrOs easily distributes
homogenously at the grain boundaries of Lay;3Ca;;3MnOs3, result-
ing in a heavy diffusion. The Mn3* composition variation due to the
ionic diffusion will be unfavorable to the double-exchange inter-
action, and the metal-to-insulator transition is thus suppressed. In
the meantime, this kind of ionic interdiffusion can lead to a change
of high-temperature conductivity mechanism like that of Mn-site
doping effects. Although the limited ion substitution greatly has
changed the metal-to-insulator transition temperature and cor-
responding high-temperature conductivity in the composites, the
refined grain microstructure by addition of BaZrO3; makes the sys-
tem to keep three-dimensional continuum percolation behavior. It
should be pointed out that a large low-field magnetoresistance of
53%in 0.6 T for the x = 0.90 composite was found, which is beneficial
to practical applications for CMR materials.

4. Conclusion

We have prepared the Lay;3Caj;3Mn0O3/BaZrOs composites by
conventional solid state reaction method. The electrical and magne-
toresistance properties of the composites have been investigated.
Remarkable changes of metal-to-insulator transition tempera-
ture, low-field magnetoresistance and high-temperature resistivity
behavior were observed, suggesting importance of the varia-
tion of the manganite composition due to ionic interdiffusion
in the Lay;3Ca;3Mn03/BaZrO3 composites. However, the refined
grain microstructure by due to suppression of the Lay;3Ca;;3MnO3
growth by addition of BaZrO3 makes the system to keep 3D contin-
uum percolation behavior at room temperature.
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