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a  b  s  t  r  a  c  t

We  report  the results  of electrical  resistivity  and  magnetoresistance  (MR)  measurements  carried  out
on La2/3Ca1/3MnO3/BaZrO3 composites  prepared  by  solid  state  reaction  method.  The  metal-to-insulator
transition and  the  magnitude  of  magnetoresistance  are  significantly  influenced  by the  content  of  BaZrO3,
suggesting  the  presence  of ionic  diffusion  between  La2/3Ca1/3MnO3 and  BaZrO3,  although  the  dependence
of  the  electrical  resistivity  as a function  of La2/3Ca1/3MnO3 volume  fraction  can  be  roughly  described  by
vailable online 13 January 2012

eywords:
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classical  percolation  conduction  model.  The  conductive  behavior  above  the  metal-to-insulator  transition
temperature  can  be  well  explained  by Mott’s  variable  range  hopping  model.

© 2012 Elsevier B.V. All rights reserved.
aZrO3

. Introduction

Much attention has been paid on perovskite oxides dur-
ng the last decades because they have rich physical properties
ncluding superconductivity with high-TC, ferromagnetism with
alf metallicity, and ferroelectricity with large polarizations, etc.
or manganite-based perovskite oxides of La1−xAxMnO3 with an
ptimal doping content the colossal magnetoresistance (CMR)
s observed when a high magnetic field is applied. The mag-
etoresistance effect is greatly influenced by the presence of
rain boundaries in polycrystalline materials [1,2] and the lattice
ismatch strain in heteroepitaxial films [3,4]. For potential appli-

ations in spintronics devices a large magnetoresistance effect at
ow applied magnetic field is necessary. A lot of efforts have been
evoted to achieve low-field magnetoresistance in magnetic tunnel

unctions (MTJs) with insulating barrier [5–12], in artificial bicrys-
al grain boundary junctions [13–18] and in manganite/insulating
xide composites [19–24]. In magnetic tunnel junctions the tun-
eling magnetoresistance (TMR) effect is principally dependent on
he spin polarization of ferromagnetic electrodes and the spin-
ependent tunneling process through insulating barrier. For the
rtificial bicrystal grain boundary junctions, isolated grain bound-

ry effect on low field magnetoresistance can be investigated.
ell-defined manganite/barrier interface and manganite grain

oundary structure must be obtained in both cases above.

∗ Corresponding author. Tel.: +86 29 86231079; fax: +86 29 86224487.
E-mail address: yflu@c-nin.com (Y. Lu).
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Usually conventional solid state reaction is employed to pre-
pare manganite/insulating oxide composites, where the secondary
insulating phase is assumed to be chemically immiscible with the
manganite matrix. Enhanced spin-dependent scattering of con-
ductive electrons at manganite/oxide phase boundary is expected
to contribute to low-field magnetoresistance effect in the com-
posites. In La2/3Sr1/3MnO3/CeO2 composite the magnetoresistance
of 1.5% at 100 Oe was  observed for the sample with a percola-
tion threshold of La2/3Sr1/3MnO3 volume fraction (fLSMO = 0.20)
[25], which is close to the critical volume fraction theoretically
predicted for usual three-dimensional lattice types [26]. Similar
experimental results for the manganite/insulating oxide com-
posites were reported [21]. In the real systems, possible ionic
diffusion between the phases, however, is important for both
theoretical and experimental aspects for understanding behav-
ior of conductivity for composite materials. We  present detailed
preparation, electrical transport and magnetoresistance studies of
the La2/3Ca1/3MnO3/BaZrO3 composite. We  observe that the effect
of ionic interdiffusion between the La2/3Ca1/3MnO3(LCMO) and
BaZrO3 secondary phase (BZO) should be taken into account for
explanation of transport properties.

2. Experiment

Conventional solid state reaction in air was used to prepare La2/3Ca1/3MnO3

bulks. These starting powders of La2O3, CaCO3 and MnO2 (99.5% purity) were mixed

and  heated at 1000 ◦C for 36 h in air with intermediate grinding. Cold-pressed pel-
lets were then sintered at 1400 ◦C for 12 h with furnace cooling. For preparation of
polycrystalline (x)LCMO:(1 − x)BZO samples with different La2/3Ca1/3MnO3 volume
fractions x, milled LCMO powder was thoroughly mixed and grounded with BaZrO3

powder. The mixture was finally sintered at 1300–1400 ◦C for 24 h in air.

dx.doi.org/10.1016/j.jallcom.2012.01.024
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ig. 1. XRD pattern for (x)La2/3Ca1/3MnO3:(1 − x)BaZrO3composites with different
a2/3Ca1/3MnO3volume fraction x.

The phase composition and the crystalline quality of the La2/3Ca1/3MnO3 and
omposites were analyzed employing X-ray diffraction (XRD) using Cu-K  ̨ radia-
ion. The micrograph of samples was investigated by scanning electric microscopy
SEM). Resistivity dependent on temperature from 77 K to 300 K was  measured by
tandard four-probe method in zero field and 0.6 T applied magnetic field to evaluate
lectrical and magnetoresistance properties for bar-shaped samples. The magne-
oresistance (MR) is defined as MR=  (R(0) − R(H))/R(0), where R(0) is the resistivity
n  zero magnetic field and R(H) is the resistivity in applied magnetic field of 0.6 T.

. Results and discussion

X-ray powder diffraction result on La2/3Ca1/3MnO3 in Fig. 1
emonstrates a pure perovskite phase within the experimental
rror. For (x) La2/3Ca1/3MnO3:(1 − x) BaZrO3 composites, no impu-
ity phase peaks except for diffraction peaks of the La2/3Ca1/3MnO3
nd BaZrO3 phase were detected. The relative intensities of diffrac-
ion peaks from the LCMO phase systematically change with
he LCMO volume fraction. We  notice that the (1 1 0) diffrac-
ion peak positions of the La2/3Ca1/3MnO3 phase have a rather
light shift towards low-angle direction with increasing the BaZrO3
ontent, whereas the (1 1 0) diffraction peak of the BaZrO3phase
oves towards high-angle direction. This suggests the pres-

nce of interdiffusion between Mn3+ and Zr4+ discussed later.
t is actually difficult to get a complete chemical immiscibility
etween La2/3Ca1/3MnO3 and BaZrO3 if usual solid state reaction
ethod is employed, although the ionic diffusion between the

a2/3Ca1/3MnO3 and BaZrO3 phases does not lead to formation of
mpurity phases in the composites.

Fig. 2 gives SEM images of the (x)La2/3Ca1/3MnO3:(1 − x)BaZrO3
omposites to study morphology evolution with introduction of
aZrO3. Pure La2/3Ca1/3MnO3 has a typical equiaxed microstruc-
ure with an average grain size of ∼4 �m.  Upon addition of
0% BaZrO3 the microstructure of the composite is apparently
hanged, where a lot of small grains are detectable. Further increas-
ng the BaZrO3 volume fraction obviously leads to formation of

icrostructure with homogenous fine grains with an average size

f 0.4–0.5 �m.  For the x = 0.2 sample, however, sudden coarsening is
ontrolled by the growth behavior of BaZrO3 itself. We  believe that
n the (x)La2/3Ca1/3MnO3:(1 − x)BaZrO3 system the introduction
f BaZrO3 significantly suppresses the growth of La2/3Ca1/3MnO3
ompounds 522 (2012) 25– 29

grains due to blocking of movement of the grain boundaries. This
kind of refined grain microstructure will affect the electrical trans-
port property in these composites.

We  measured temperature dependent resistivity curves in zero
and 0.6 T applied magnetic field for a series of specimens with
varying x. For x > 0.23 we  observe an obvious metal-to-insulator
transition. In Fig. 3 representative resistivity curves dependent on
temperature for (x)La2/3Ca1/3MnO3:(1 − x)BaZrO3 composites are
plotted. The transition peak temperature is denoted as Tp. On the
contrary, the samples with x < 0.23 do not display any resistive
transition in the measured temperature and resistance range.

Fig. 4 indicates the transition peak temperature Tp with differ-
ent LCMO volume fractions for the composites. With addition of a
little amount of BaZrO3 the Tp of the composite significantly drops
down to 125 K for x = 0.90. Further increasing the BZO content gives
rise to a slightly rising of Tp, but the Tp value is only around 180 K
for x ∼ 0.40. The Tp drop in the LCMO/BZO composite is much larger
than that in other manganite/insulator composites [27,21]. This can
be attributed to a possible variation of the manganite composition
due to the existence of ionic interdiffusion between the phases.
The reversible increase in Tp with decreasing the LCMO content
for x < 0.90 implies that the ionic interdiffusion occurs mainly at
the interface of the La2/3Ca1/3MnO3 and BaZrO3 phases. The mag-
netoresistance of the composite shows a reverse trend with the
volume fraction of BaZrO3, i.e. the MR  increases with decreasing
the Tp similar to the effects induced by element substitution [28]
and lattice strain [4].

Fig. 5 shows the resistivity of the composites at 300 K as a func-
tion of the La2/3Ca1/3MnO3 volume fraction. A sharp increase of five
orders of magnitude in the resistivity of composites was detected
at x ∼ 0.20 in the measured range. The classical percolation law is
usually used to evaluate the conductive process for the conduc-
tive regime. According the percolation law � ∝ (f − fc)−t, [29] the
percolation threshold fc the resistivity exponent t fitted to the mea-
sured data are 0.195 and 1.9, which actually fall in the range of
theoretical predications of three-dimensional continuum percola-
tion models. The 0.195 percolation threshold basically agrees with
the value found for La2/3Sr1/3MnO3/CeO2 composites (fLSMO = 0.20)
[21]. Because many factors, such as porosity, poor connectivity,
grain size difference and composition variation, affect the percola-
tion conductive behavior in conducting/insulating composites, we
should point out that the fitting does not fully confirm the presence
of pure percolative conductivity in the La2/3Ca1/3MnO3/BaZrO3
composites, where the apparent decrease of the transition peak
temperature Tp with the introduction of BaZrO3 is an indicator of
composition variation in the La2/3Ca1/3MnO3.

It has been found above that the electronic conduction at high
T with the La2/3Ca1/3MnO3volume fraction follows the classical
3D continuum model for the LCMO/BZO composite. In order to
explore the conductive mechanism above Tp we  analyze the tem-
perature dependent resistivity for the composites. For the pure
La2/3Ca1/3MnO3 sintered bulk the electronic conduction above
Tp can be usually described by the thermal activation model
� = �∞exp(E0/� T) [21]. For the LCMO/BZO composite it was not
successful to fit the �(T) data above Tp by the thermal activa-
tion model. The measured data in the relatively wide temperature
range are well fitted by the variable range hopping (VRH) model
� = �0exp[(T0/T)1/4] proposed by Mott [30]. Fig. 6 displays several
typical results for fLCMO = 0.23, 0.30, 0.70 and 0.90. We  find that
the slope obtained from the relationship between ln�  and T−1/4 as
shown in Fig. 6 is almost identical for different x, suggesting that
increasing the BZO content does not lead to a change of electronic

conduction mechanism in the composite. This also indicated a very
low and limited solution of BaZrO3 in La2/3Ca1/3MnO3. Based on
consideration of the tendency of the Tp and MR  as indicated in Fig. 4,
we believe that the ionic diffusion, especially at the phase interface,
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Fig. 2. SEM images of (x)La2/3Ca1/3MnO3:(1 − x)BaZrO3 sintered bulks.

Fig. 3. Temperature-dependent resistivity curves for (x)La2/3Ca1/3MnO3:(1 − x)BaZrO3 composites measured at zero field (solid lines) and 0.6 T (dotted lines).
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Fig. 4. Metal-to-insulator transition temperature Tp (solid circles) and magnetore-
sistance MR (open circles) dependent on the La2/3Ca1/3MnO3volume fraction x. The
MR  was measured at 0.6 T and given at near Tp, i.e. the maximal MR  value.

Fig. 5. Electrical resistivity at 300 K as a function of the La2/3Ca1/3MnO3volume
fraction x. The line corresponds to the fit by percolation law.

Fig. 6. ln�  is plotted versus T−1/4 for some representative
(x)La2/3Ca1/3MnO3:(1 − x)BaZrO3composites. The lines are linear fits to the
data by the formula � = �0exp[(T0/T)1/4] above Tp.
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is responsible for the VRH-type conductivity in the LCMO/BZO com-
posite. The ionic diffusion limited at the LCMO/BZO phase interface
may  give rise to random potential fluctuations, which localize the
carriers in the LCMO.

Substitutive ionic diffusion in the LCMO/BZO composite occurs
most probably between Mn3+ and Zr4+. The probability of the
Mn3+/Zr4+ interdiffusion should have a maximum at the phase
interface. For the high fLCMO composite the BaZrO3 easily distributes
homogenously at the grain boundaries of La2/3Ca1/3MnO3, result-
ing in a heavy diffusion. The Mn3+ composition variation due to the
ionic diffusion will be unfavorable to the double-exchange inter-
action, and the metal-to-insulator transition is thus suppressed. In
the meantime, this kind of ionic interdiffusion can lead to a change
of high-temperature conductivity mechanism like that of Mn-site
doping effects. Although the limited ion substitution greatly has
changed the metal-to-insulator transition temperature and cor-
responding high-temperature conductivity in the composites, the
refined grain microstructure by addition of BaZrO3 makes the sys-
tem to keep three-dimensional continuum percolation behavior. It
should be pointed out that a large low-field magnetoresistance of
53% in 0.6 T for the x = 0.90 composite was  found, which is beneficial
to practical applications for CMR  materials.

4. Conclusion

We  have prepared the La2/3Ca1/3MnO3/BaZrO3 composites by
conventional solid state reaction method. The electrical and magne-
toresistance properties of the composites have been investigated.
Remarkable changes of metal-to-insulator transition tempera-
ture, low-field magnetoresistance and high-temperature resistivity
behavior were observed, suggesting importance of the varia-
tion of the manganite composition due to ionic interdiffusion
in the La2/3Ca1/3MnO3/BaZrO3 composites. However, the refined
grain microstructure by due to suppression of the La2/3Ca1/3MnO3
growth by addition of BaZrO3 makes the system to keep 3D contin-
uum percolation behavior at room temperature.
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